Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Networks and dense suspensions frequently reside near a boundary between soft (or fluidlike) and rigid (or solidlike) regimes. Transitions between these regimes can be driven by changes in structure, density, or applied stress or strain. In general, near the onset or loss of rigidity in these systems, dissipation-limiting heterogeneous nonaffine rearrangements dominate the macroscopic viscoelastic response, giving rise to diverging relaxation times and power-law rheology. Here, we describe a simple quantitative relationship between nonaffinity and the excess viscosity. We test this nonaffinity-viscosity relationship computationally and demonstrate its rheological consequences in simulations of strained filament networks and dense suspensions. We also predict critical signatures in the rheology of semiflexible and stiff biopolymer networks near the strain stiffening transition.more » « less
-
Fibrous networks such as collagen are common in physiological systems. One important function of these networks is to provide mechanical stability for cells and tissues. At physiological levels of connectivity, such networks would be mechanically unstable with only central-force interactions. While networks can be stabilized by bending interactions, it has also been shown that they exhibit a critical transition from floppy to rigid as a function of applied strain. Beyond a certain strain threshold, it is predicted that underconstrained networks with only central-force interactions exhibit a discontinuity in the shear modulus. We study the finite-size scaling behavior of this transition and identify both the mechanical discontinuity and critical exponents in the thermodynamic limit. We find both non-mean-field behavior and evidence for a hyperscaling relation for the critical exponents, for which the network stiffness is analogous to the heat capacity for thermal phase transitions. Further evidence for this is also found in the self-averaging properties of fiber networks.more » « less
-
Tissues commonly consist of cells embedded within a fibrous biopolymer network. Whereas cell-free reconstituted biopolymer networks typically soften under applied uniaxial compression, various tissues, including liver, brain, and fat, have been observed to instead stiffen when compressed. The mechanism for this compression-stiffening effect is not yet clear. Here, we demonstrate that when a material composed of stiff inclusions embedded in a fibrous network is compressed, heterogeneous rearrangement of the inclusions can induce tension within the interstitial network, leading to a macroscopic crossover from an initial bending-dominated softening regime to a stretching-dominated stiffening regime, which occurs before and independently of jamming of the inclusions. Using a coarse-grained particle-network model, we first establish a phase diagram for compression-driven, stretching-dominated stress propagation and jamming in uniaxially compressed two- and three-dimensional systems. Then, we demonstrate that a more detailed computational model of stiff inclusions in a subisostatic semiflexible fiber network exhibits quantitative agreement with the predictions of our coarse-grained model as well as qualitative agreement with experiments.more » « less
An official website of the United States government
